| CG |
CONJUGATE_GRADIENT |
| LB |
LBFGS |
| LG |
LINE_GRADIENT_DESCENT |
| SG |
STOCHASTIC_GRADIENT_DESCENT |
| title |
Test Optimzation Algorithm | iterations: 300 |
| class |
class vsoc.training.LearningRateIterationsTraining$ |
| learningRate |
1.0E-04 |
| trainingData |
playerpos_x A 50000, playerpos_x A 100000, playerpos_x A 500000, playerpos_x A 1000000 |
| batchSizeTrainingDataRelative |
0.10 |
| testData |
playerpos_x B 1000 |
| iterations |
300 |
| optAlgo |
CONJUGATE_GRADIENT, LBFGS, LINE_GRADIENT_DESCENT, STOCHASTIC_GRADIENT_DESCENT |
| seed |
8726567394090864187 |
Conclusion
Stochastic gradient descent seems to be the best optimisation. Eventually the other algorithms perform better with other meta parameters.
Keine Kommentare:
Kommentar veröffentlichen